
Project acronym: MODELPLEX
Project full title: MODELling solution for comPLEX software systems
Contract n° 034081

Workpackage 4: Verification and Validation

Deliverable D4.3.c: Verification Tools

(EXTRACT)

Project co-funded by the European Community under the “Information Society
Technology” Programme



Behavioural Consistency Checker (BCC)
This section presents the Behavioral Consistency Checker User’s Guide.

1.1. Installation
It should be noted that for this first prototype version, packaging is incomplete as the
full SVT (Simulation, Verification and Test) workbench (T4.1) is not yet operational. A
version packaged as a ModelBus service is registered in the ModelBus service
registry maintained by Fraunhofer Fokus based at:
http://monarch.fokus.fraunhofer.de:8080/WebRegistryClient/

This version will serve as basis for integration in the SVT workbench in further
deliverables, so the tool will be available as part of an Eclipse plugin.

1.1.1. Prerequisites
The standalone java application requires a JRE >= 1.5, and packages its
dependencies to some standard libraries (org.eclipse.emf, org.eclipse.uml2) so there
are no additional requirements.
Optional setup of the verification tool suite server CPN-AMI 3.2 requires a machine
running Linux or MacOSX. This can be a different machine than the one running the
actual client tool.
The input models need to be available in standard EMF compliant UML 2.1 format,
usually bearing the extension “.uml”. To know whether this is the case, try opening
the model using the Eclipse built-in UML model editor, if the tree view does not open
correctly, the BCC tool will also have parsing issues with the model.

1.1.2. Distribution Package
The BCC package is available from:
https://www.modelplex.org/svn/work_area/WP4/T4.3 Model based verification/LIP6-
BCC/BCC-1.0.zip.
The standalone version is packaged as a zipped archive containing an executable jar
file, the required libraries, and some examples taken from WP1 case study material.
By default BCC is configured to access the publicly available test CPN-AMI server
hosted at LIP6, but the user can follow these instructions to download and install their
own server if necessary.

OPTIONAL:
To install CPN-AMI on another server (Linux or MacOS X), download the package at:

• For Linux: http://www.lip6.fr/cpn-ami-download/CPN-AMI-3.2.tar.gz
• For Mac PPC: http://www.lip6.fr/cpn-ami-download/CPN-AMI-PPC-3.2.dmg
• For Mac Intel: http://www.lip6.fr/cpn-ami-download/CPN-AMI-X86-3.2.dmg

Then decompress the archive and follow the instructions of the README file to
compile and run the server. The homepage at http://move.lip6.fr/software/CPNAMI/
provides additional information on the contents of this distribution.



1.1.3. Installation Instructions
Simply unzip the archive BCC-1.0.zip in a folder. Since this is a standalone java
program, no additional installation is required.
To execute simply run “java –jar bcc-1.0.jar” in the root folder of the unzipped archive
or double-click this file according to your platform. A simple Swing GUI should open.
The default configuration is set up to access a publicly available CPN-AMI instance,
running on host hephaistos.lip6.fr on port 7001. The default user is “modelplex” and
the associated password is “123456”. These settings can be changed through the
“Options->CPNAMI Settings”. The menu entry “Options->Save Settings” saves both
these connection settings and the default model chosen at startup.

1.1.4. Validating Installation
To check that the installation is operational, try running the tool on one of the
example models available included in the “models/” folder of the distribution. The tool
should point at a model taken from SAP examples for WP1 included in the
distribution. Simply hit the “Transform button” to analyze the UML model provided
and generate the underlying Petri net representation that is used for verification.
For each activity diagram or state machine present in the source file, a corresponding
net is created. Then left-click the diagram you wish to analyze in the transformation
products panel, and hit the “Check Consistency” button.
The service may take some time to run especially if the model is very large, be
patient. When run in console mode, the tool displays some traces and indicates
progress by producing a line of dots “.”.
The analysis results are then presented at the bottom of the GUI, with indication of
the severity, the source of the error, and a text describing the error. This particular
model of a Sales Order Process is full of errors, it displays unbounded behavior that
affects practically the whole activity diagram. The tool should produce a lot of red
error messages if everything is installed correctly.

1.2. BCC User’s Guide
The tool in its present form requires very little user expertise to run, as we have
limited configuration to the essential: the input file name.
Simply choose your model file, click the transform button, then select the diagram
you wish to analyze and hit the “Check Consistency” button. Future versions of the
tool will produce more transformation products illustrating a composition of related
diagrams of the source specification (e.g. an interaction between two state
machines), but configuration will remain minimal as the tool will auto select
incrementally more complex scenarios (e.g. isolated diagrams with uncontrolled
environment, if validated composition of diagrams etc…). Additional consistency rules
will also be defined introducing new kinds of errors and warnings, but this does not
require user intervention.



Figure 1 BCC Graphical User Interface

The steps to run the tool are:
1. Select the model.
2. Transform the model to obtain a Petri net for each diagram.
3. Run the analysis.
4. If you have errors try to correct them and then iterate.

The error description are hopefully self-explanatory, but a full index of potentially
raised errors and some tips on how to correct them will be elaborated and available
with the full user documentation of the next prototype release.



Figure 2 Error display. You can sort the results by clicking the column header, here we sort by
severity.


